Curvature effect on the structure of phospholipid bilayers.
نویسندگان
چکیده
High-resolution small-angle X-ray scattering (SAXS), complemented by small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments, was used to study the effect of curvature on the bilayer structure of dioleoyl-phosphatidylcholine (DOPC) and dioleoyl-phosphatidylserine (DOPS) unilamellar vesicles (ULVs). Bilayer curvature, as a result of finite vesicle size, was varied as a function of vesicle radius and determined by DLS and SANS measurements. Unilamellarity of large DOPC ULVs was achieved by the addition of small amounts (up to 4 mol %) of the charged lipid, DOPS. A comparison of SANS data over the range of 0.02 < q <0.2 A-1 indicated no change in the overall bilayer thickness as a function of ULV diameter (620 to 1840 A). SANS data were corroborated by high-resolution (0.06 < q <0.6 A-1) SAXS data for the same diameter ULVs and data obtained from planar samples of aligned bilayers. Both the inner and outer leaflets of the bilayer were found to be indistinguishable. This observation agrees well with simple geometric models describing the effect of vesicle curvature. However, 1220-A-diameter pure DOPS ULVs form asymmetric bilayers whose structure can most likely be rationalized in terms of geometrical constraints coupled with electrostatic interactions, rather than curvature alone.
منابع مشابه
Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion.
The adsorption of large unilamellar vesicles composed of various combinations of phosphatidylcholine, phosphatidylethanolamine (PE), monomethyl PE, and dimethyl PE (PE-Me2) onto a glass surface was studied using fluorescence microscopy. The average lipid geometry within the vesicles, described mathematically by the average intrinsic curvature, C(0,ave), was methodically altered by changing the ...
متن کاملMolecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers
Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...
متن کاملEffect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy.
The nanomechanical response of supported lipid bilayers has been studied by force spectroscopy with atomic force microscopy. We have experimentally proved that the amount of ions present in the measuring system has a strong effect on the force needed to puncture a 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer with an atomic force microscope tip, thus highlighting the role that monovalent ...
متن کاملSolid-State NMR Spectroscopic Approaches to Investigate Dynamics, Secondary Structure and Topology of Membrane Proteins
Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, H solid-state NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains of phospholipid bilayers [8-13]. Moreover, P solid...
متن کاملModification of Phospholipid Bilayers Induced by Sulfurated Naphthoquinones
New thionaphthoquinones and their hydroxyl derivatives, bearing alkyl side chains that match the phospholipids POPC and POPE, were synthesized in order to investigate their interactions with lipids. It was observed that, in general, these additives destabilize the lipid bilayer and induce less organized structures with higher curvature, in particular the induction of an hexagonal phase on aqueo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2007